An autonomous decentralized control mechanism for power flow in an open electric energy network

Author(s):  
Hiroumi Saitoh ◽  
Satoshi Miyamori ◽  
Toru Shimada ◽  
Jun'ichi Toyoda
1997 ◽  
Vol 117 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Hiroumi Saitoh ◽  
Satoshi Miyamori ◽  
Toru Shimada ◽  
Junichi Toyoda

Author(s):  
Marija D. Ilic ◽  
Pedro M. S. Carvalho

We propose to conceptualise electric energy systems as complex dynamical systems using physically intuitive multilayered energy modelling as the basis for systematic diverse technology integration, and control in on-line operations. It is shown that such modelling exhibits unique structure which comes from the conservation of instantaneous power (P) and of instantaneous reactive power ( _Q), (interaction variables (intVar)) at the interfaces of subsystems. The intVars are used as a means to model and control the interactive zoomed-out inter-modular (inter-area, inter-component) system dynamics. Control co-design can then be pursued using these models so that the primary control shapes intVars of its own module by using its own lowlevel detailed technology-specific model and intVar info exchange with the neighbours. As a result, we describe how the proposed approach can be used to support orderly evolution from today’s hierarchical control to a platform enabling flexible interactive protocols for electricity services. The potential for practical use of the proposed concepts is far-reaching and transparent. All that needs to be conceived is that intVar characterising any intelligent Balancing Authority (iBA) is a generalisation of today’s Area Control Error (ACE) characterising net energy balance of a Balancing Authority (BA). An iBA can be any subsystem with its own sub-objectives, such as distributed energy resources (DERs) comprising customers and grid forming microgrids; distribution systems; transmission systems; Independent System Operators (ISOs); and, ultimately, electric energy markets within large interconnection. Several industry problems are described as particular sub-problems of general interactive electricity services. These formulations help one compare models and assumptions used as part of current solutions, and propose enhanced solutions. Most generally, feasibility and stability conditions can be introduced for ensuring feasible power flow solutions, regulated frequency and voltage and orderly power exchange across the iBAs.


Author(s):  
Bharat Bhushan Khare ◽  
Rajeev Shankar Pathak ◽  
Sanjeev Sharma ◽  
Vinod Kumar Singh

According to future renewable electric energy distribution and management (FREEDM) system, solid state transformers play an important role in smart grid technologies. They have several advantages over conventional transformers such as bi-directional power flow, light in weight, compact size, etc. They also compensate the environmental issues which are created due to transformer oil. Because of various advantages over traditional transformer, SST is preferred widely at the present time. So in this chapter, the various architectures, needs, and applications of solid state transformers are discussed. The global market of SST has continuously improved because it has several applications and benefits.


2020 ◽  
Vol 60 (1) ◽  
pp. 232-247 ◽  
Author(s):  
Takeshi Kano ◽  
Akio Ishiguro

Abstract Snakes have no limbs and can move in various environments using a simple elongated limbless body structure obtained through a long-term evolutionary process. Specifically, snakes have various locomotion patterns, which they change in response to conditions encountered. For example, on an unstructured terrain, snakes actively utilize the terrain’s irregularities and move effectively by actively pushing their bodies against the “scaffolds” that they encounter. In a narrow aisle, snakes exhibit concertina locomotion, in which the tail part of the body is pulled forward with the head part anchored, and this is followed by the extension of the head part with the tail part anchored. Furthermore, snakes often exhibit three-dimensional (3-D) locomotion patterns wherein the points of ground contact change in a spatiotemporal manner, such as sidewinding and sinus-lifting locomotion. This ability is achieved possibly by a decentralized control mechanism, which is still mostly unknown. In this study, we address this aspect by employing a synthetic approach to understand locomotion mechanisms by developing mathematical models and robots. We propose a Tegotae-based decentralized control mechanism and use a 2-D snake-like robot to demonstrate that it can exhibit scaffold-based and concertina locomotion. Moreover, we extend the proposed mechanism to 3D and use a 3-D snake-like robot to demonstrate that it can exhibit sidewinding and sinus-lifting locomotion. We believe that our findings will form a basis for developing snake-like robots applicable to search-and-rescue operations as well as understanding the essential decentralized control mechanism underlying animal locomotion.


2015 ◽  
Vol 2015 (0) ◽  
pp. _2A2-S02_1-_2A2-S02_4
Author(s):  
Tatsuya ONO ◽  
Takeshi KANO ◽  
Hitoshi AONUMA ◽  
Yoshiya MATSUZAKA ◽  
Akio ISHIGURO

Sign in / Sign up

Export Citation Format

Share Document